Skip to main content

Mathematical Model for PMSM

This document provides a comprehensive synthesis of the mathematical foundations, state-space modeling, transfer functions, and control strategies for permanent magnet synchronous motor (PMSM) speed control.


1. Introduction to PMSM

Permanent Magnet Synchronous Motors (PMSM) are electrical motors that use permanent magnets to produce the air gap magnetic field rather than electromagnets.

Key Advantages

  • High Efficiency: No copper losses in the rotor
  • High Power Density: Compact structure with high torque-to-weight ratio
  • Fast Dynamic Response: Superior transient performance
  • Low Maintenance: No brushes or slip rings
  • Noiseless Operation: Smooth torque with minimal noise
  • Extended Speed Range: Suitable for high-speed applications

Motor Structure

  • Stator: Three-phase windings carrying AC current
  • Rotor: Permanent magnets producing constant flux
  • Power Electronics: Inverter for frequency conversion and control

2. Coordinate Transformations

Vector control requires transforming three-phase stationary quantities into a rotating two-phase d-q frame.

2.1 Clarke Transformation

Converts (a, b, c) → (α, β):

[iαiβ]=23[1121203232][iaibic]\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix}
  • iαi_α: Real-axis component
  • iβi_β: Imaginary-axis component

2.2 Park Transformation

Converts (α, β) → (d, q) rotating frame:

[idiq]=[cosθsinθsinθcosθ][iαiβ]\begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix}
  • θ: Rotor position
  • d-axis: aligned with flux
  • q-axis: perpendicular

3. PMSM Mathematical Modeling

3.1 State-Space Electrical Model

Voltage equations:

vd=Rsid+dλddtωrλqv_d = R_s i_d + \frac{d\lambda_d}{dt} - \omega_r \lambda_q vq=Rsiq+dλqdt+ωrλdv_q = R_s i_q + \frac{d\lambda_q}{dt} + \omega_r \lambda_d

Flux linkages:

λq=Lqiq,λd=Ldid+λaf\lambda_q = L_q i_q, \qquad \lambda_d = L_d i_d + \lambda_{af}

Current dynamics:

diddt=vdRsid+ωrLqiqLd\frac{di_d}{dt} = \frac{v_d - R_s i_d + \omega_r L_q i_q}{L_d} diqdt=vqRsiq+ωrLdidωrλafLq\frac{di_q}{dt} = \frac{v_q - R_s i_q + \omega_r L_d i_d - \omega_r \lambda_{af}}{L_q}

3.2 Electromagnetic Torque

Te=32P2(λdiqλqid)T_e = \frac{3}{2}\frac{P}{2}(\lambda_d i_q - \lambda_q i_d)

For surface-mounted PMSM (Ld=LqL_d=L_q):

Te=32PλafiqT_e = \frac{3}{2} P \lambda_{af} i_q

3.3 Mechanical Dynamics

Te=Tl+Bωr+JdωrdtT_e = T_l + B\omega_r + J \frac{d\omega_r}{dt}

4. Example Motor Parameters

ParameterDescriptionValueUnit
RsR_sStator Resistance0.2Ω
LdL_dDirect axis Inductance8.5mH
LqL_qQuadrature axis Inductance8.5mH
PPNumber of Poles8-
λafλ_{af}Flux0.175Wb
BBFriction0.005N·m·s
JJIntertia0.089kg·m²
Rated SpeedRated Speed1000RPM

9. References

  • Krishnan, R. Permanent Magnet Synchronous and Brushless DC Motor Drives (2010)
  • Pillay, P. & Krishnan, R. Modeling of Permanent Magnet Motor Drives (1989)
  • Maamoun, A., et al. Fuzzy Logic Based Speed Controller for PMSM Drive (2013)
  • Wang, Z., et al. SVPWM Techniques and Applications in HTS PMSM Machines Control (2010)