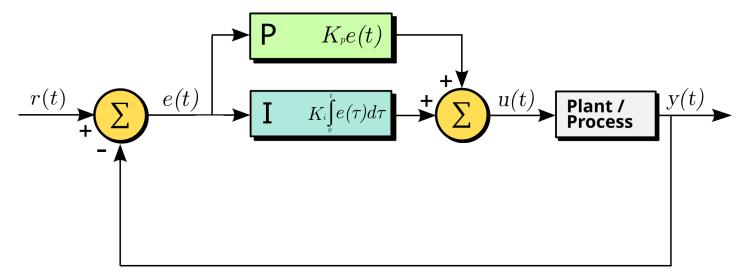


DC Voltage Controller



Block diagram of DC Voltage Control

PI Control

PI control is a feedback back based control loop.

- Proportional (P): Responds to the error and producing an output that is directly proportional to the magnitude of the error.
 - As error approaches zero then Proportional will reach zero
- Integral (I): Cumulative sum of past errors and holds the required magnitude out control signal.
 - Responsible for reducing error

Properties

Proportional Gain K_P , Integral Gain K_i

Proportional Gain

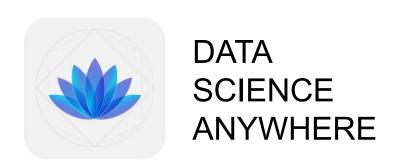
- Increases responsiveness → higher Kp makes system react faster.
- Reduces steady-state error but cannot eliminate it completely.
- Too high Kp → causes oscillations or even instability.
- Too low Kp → system becomes sluggish.
- Affects rise time (lower rise time with higher Kp).

Integral Gain

- Eliminates steady-state error completely (good for accuracy).
- Improves tracking performance for constant references.
- Increases overshoot and oscillations if too high.
- Slows down the system response (increases settling time if not tuned properly).

$$V_{dc} = \frac{V_{m}}{2\pi} \left(1 + \cos \alpha \right)$$

$$d = 0^{\circ} \Rightarrow V_{dc} = \frac{V_{m}}{4\pi} \left(1 + 1 \right) = \frac{V_{m}}{\pi}$$


$$d = 90^{\circ} \Rightarrow V_{dc} = \frac{V_{m}}{4\pi} \left(1 + 0 \right) = \frac{V_{m}}{2\pi}$$

$$d = 90^{\circ} \Rightarrow V_{dc} = \frac{V_{m}}{4\pi} \left(1 + 0 \right) = \frac{V_{m}}{2\pi}$$

$$d = 90^{\circ} \Rightarrow V_{dc} = \frac{V_{m}}{4\pi} \left(1 + 0 \right) = 0$$

=> As Finning Angle Increases

Output de voltage declar

https://www.youtube.com/@datascienceanywhere

https://www.udemy.com/user/freeai-space/

https://github.com/datascienceanywhere

https://vedicskill.com